Search results for "RNA Polymerase I"

showing 10 items of 81 documents

Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex

2014

Highlights • We characterise Sas3p and Gcn5p active HAT complexes in WT and deleted TAP-strains. • We confirm that Pdp3p interacts with NuA3, histones and chromatin regulators. • Pdp3p MS-analysis reveals its phosphorylation, ubiquitination and methylation. • Sas3p can substitute Gcn5p in acetylation of histone H3K14 but not of H3K9. • Genome-wide profiling of Sas3p supports its involvement in transcriptional elongation.

nt nucleotidePTM post-translational modificationNuA3 histone acetyltransferase complexChIP-on-chip chromatin immunoprecipitation with genome-wide location arraysBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyChromatin remodelingHistonesHistone H3NuA3 nucleosomal acetyltransferase of histone H3Histone H1Histone H2APdp3TAP–MS strategyHistone codelcsh:QH301-705.5TAP tandem affinity purificationGeneticsRNAPII RNA polymerase IIHistone acetyltransferaseWCE whole cell extractSAGA Spt-Ada-Gcn acetyltransferaseWT wild-typeChromatinYeastCell biologyChIP-on-chiplcsh:Biology (General)Histone methyltransferasebiology.proteinHAT histone acetyltransferaseTSS transcription start siteFEBS Open Bio
researchProduct

Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast.

2016

The RPB1 mutants in the foot region of RNA polymerase II affect the assembly of the complex by altering the correct association of both the Rpb6 and the Rpb4/7 dimer. Assembly defects alter both transcriptional activity as well as the amount of enzyme associated with genes. Here, we show that the global transcriptional analysis of foot mutants reveals the activation of an environmental stress response (ESR), which occurs at a permissive temperature under optimal growth conditions. Our data indicate that the ESR that occurs in foot mutants depends mostly on a global post-transcriptional regulation mechanism which, in turn, depends on Rpb4-mRNA imprinting. Under optimal growth conditions, we …

0301 basic medicineRNA StabilitySaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityMutantSaccharomyces cerevisiaeBiophysicsRNA polymerase IISaccharomyces cerevisiaeBiochemistryMolecular Imprinting03 medical and health sciencesStructural BiologyTranscription (biology)Stress PhysiologicalGeneticsRNA MessengerImprinting (psychology)Molecular BiologyGeneGeneticsMessenger RNAbiologybiology.organism_classificationCell biology030104 developmental biologyMutationbiology.proteinRNA Polymerase IIBiochimica et biophysica acta
researchProduct

A comparative analysis to study editing of small noncoding BC200- and Alu transcripts in brain of prion-inoculated rhesus monkeys (M. Mulatta).

2012

Small retroelements (short interspersed elements, abbreviated SINEs) are abundant in vertebrate genomes. Using RNA isolated from rhesus monkey cerebellum and buffy coat, reverse-transcription polymerase chain reaction (RT PCR) was applied to clone cDNA of BC200 and Alu RNAs. Transcripts containing Alu-SINE sequences may be subjected to extensive RNA editing by ADAR (adenosine deaminases that act on RNA) deamination. Abundance of Alu transcripts was determined with real-time RT PCR and was significantly higher than BC200 (brain cytoplasmic) in cerebellum. BC200 transcripts were absent from buffy coat cells. Availability of the rhesus genome sequence allowed the BC200 transcripts to be mapped…

DNA ComplementaryHealth Toxicology and MutagenesisMolecular Sequence DataRNA-dependent RNA polymeraseBiologyToxicologyReal-Time Polymerase Chain ReactionRNA polymerase IIICreutzfeldt-Jakob SyndromeAlu ElementsComplementary DNACerebellumAnimalsShort Interspersed Nucleotide ElementsGeneticsBase SequenceReverse Transcriptase Polymerase Chain ReactionIntronRNARNA Polymerase IIISequence Analysis DNAMolecular biologyMacaca mulattaReal-time polymerase chain reactionRNA editingADARRNARNA Small UntranslatedRNA EditingJournal of toxicology and environmental health. Part A
researchProduct

RNA In Vitro Synthesis by Phage T7 DNA-Dependent RNA Polymerase

1998

The purpose of this chapter is to introduce beginners in molecular biology to RNA transcription by phage T7 DNA-dependent RNA polymerase. The work outlined here includes the transcription procedure of plasmid vectors or PCR-amplified DNA templates, the purification and identification of RNA products by sequencing with reverse transcriptase.

chemistry.chemical_compoundbiologychemistryBiochemistryTranscription (biology)RNA editingRNA polymerasebiology.proteinRNA polymerase IRNA-dependent RNA polymeraseRNARNA polymerase IIPolymerase
researchProduct

Arthropod 7SK RNA

2008

The 7SK small nuclear RNA (snRNA) is a key player in the regulation of polymerase (pol) II transcription. The 7SK RNA was long believed to be specific to vertebrates where it is highly conserved. Homologs in basal deuterostomes and a few lophotrochozoan species were only recently reported. On longer timescales, 7SK evolves rapidly with only few conserved sequence and structure motifs. Previous attempts to identify the Drosophila homolog thus have remained unsuccessful despite considerable efforts. Here we report on the discovery of arthropod 7SK RNAs using a novel search strategy based on pol III promoters, as well as the subsequent verification of its expression. Our results demonstrate th…

GeneticsbiologyComputational BiologyGene Expression7SK Small Nuclear RNAPrp24RNA polymerase IINon-coding RNARNA polymerase IIIConserved sequenceDrosophila melanogasterEvolutionary biologyRNA Small NuclearSequence Homology Nucleic AcidDatabases GeneticGeneticsbiology.proteinAnimalsNucleic Acid ConformationsnRNPArthropodsMolecular BiologyEcology Evolution Behavior and SystematicsSmall nuclear RNAMolecular Biology and Evolution
researchProduct

Initiator-Directed Transcription: Fission Yeast Nmtl Initiator Directs Preinitiation Complex Formation and Transcriptional Initiation

2022

The initiator element is a core promoter element encompassing the transcription start site, which is found in yeast, Drosophila, and human promoters. This element is observed in TATA-less promoters. Several studies have defined transcription factor requirements and additional cofactors that are needed for transcription initiation of initiator-containing promoters. However, those studies have been performed with additional core promoters in addition to the initiator. In this work, we have defined the pathway of preinitiation complex formation on the fission yeast nmt1 gene promoter, which contains a functional initiator with striking similarity to the initiator of the human dihydrofolate red…

Transcripció genèticaTranscription Geneticinitiator; transcription; general transcription factors (GTFs); RNA polymerase II; <i>Schizosaccharomyces pombe</i>SchizosaccharomycesTranscription Factor TFIIBGeneticsRNATranscription Factor TFIIDRNA Polymerase IISchizosaccharomyces pombe ProteinsGenetics (clinical)Genes; Volume 13; Issue 2; Pages: 256
researchProduct

Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning.

2017

Background TFIIS stimulates RNA cleavage by RNA polymerase II and promotes the resolution of backtracking events. TFIIS acts in the chromatin context, but its contribution to the chromatin landscape has not yet been investigated. Co-transcriptional chromatin alterations include subtle changes in nucleosome positioning, like those expected to be elicited by TFIIS, which are elusive to detect. The most popular method to map nucleosomes involves intensive chromatin digestion by micrococcal nuclease (MNase). Maps based on these exhaustively digested samples miss any MNase-sensitive nucleosomes caused by transcription. In contrast, partial digestion approaches preserve such nucleosomes, but intr…

0301 basic medicineNucleosome mappinglcsh:QH426-470MNase-sensitive nucleosomesRNA polymerase IIComputational biologySaccharomyces cerevisiaeReal-Time Polymerase Chain ReactionBiotecnologia03 medical and health sciencesTranscription (biology)Gene expressionGeneticsNucleosomeMNase-seqMicrococcal NucleaseMolecular BiologyGenebiologyMethodologyHigh-Throughput Nucleotide SequencingPromoterChromatinNucleosomeslcsh:Genetics030104 developmental biologyNucleosomal fuzzinessSubtraction TechniqueTFIISbiology.proteinTranscriptional Elongation FactorsGenèticaMicrococcal nuclease
researchProduct

The distribution of active RNA polymerase II along the transcribed region is gene-specific and controlled by elongation factors.

2010

In order to study the intragenic profiles of active transcription, we determined the relative levels of active RNA polymerase II present at the 3'- and 5'-ends of 261 yeast genes by run-on. The results obtained indicate that the 3'/5' run-on ratio varies among the genes studied by over 12 log(2) units. This ratio seems to be an intrinsic characteristic of each transcriptional unit and does not significantly correlate with gene length, G + C content or level of expression. The correlation between the 3'/5' RNA polymerase II ratios measured by run-on and those obtained by chromatin immunoprecipitation is poor, although the genes encoding ribosomal proteins present exceptionally low ratios in …

Saccharomyces cerevisiae ProteinsbiologyGeneral transcription factorTranscription GeneticGenes FungalRNA-dependent RNA polymeraseRNA polymerase IISaccharomyces cerevisiaeGene Regulation Chromatin and EpigeneticsMolecular biologyTranscripció genèticaMutationGeneticsRNA polymerase Ibiology.proteinRNATranscription factor II FRNA Polymerase IITranscription factor II DTranscriptional Elongation FactorsTranscription factor II BRNA polymerase II holoenzymeOligonucleotide Array Sequence AnalysisNucleic acids research
researchProduct

Regulation of GC box activity by 8-oxoguanine

2021

The oxidation-induced DNA modification 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) was recently implicated in the activation and repression of gene transcription. We aimed at a systematic characterisation of the impacts of 8-oxodG on the activity of a GC box placed upstream from the RNA polymerase II core promoter. With the help of reporters carrying single synthetic 8-oxodG residues at four conserved G:C base pairs (underlined) within the 5′-TGGGCGGAGC-3′ GC box sequence, we identified two modes of interference of 8-oxodG with the promoter activity. Firstly, 8-oxodG in the purine-rich (but not in the pyrimidine-rich) strand caused direct impairment of transcriptional activation. In addit…

0301 basic medicineMedicine (General)GuanineDNA RepairQH301-705.5Clinical BiochemistryCAAT box8-OxoguanineRNA polymerase IIBiochemistryDNA GlycosylasesAP endonuclease03 medical and health sciencesR5-9200302 clinical medicineGene expressionDNA-(Apurinic or Apyrimidinic Site) LyaseAP siteBiology (General)AP lesionbiologyChemistryOrganic ChemistryPromoterBase excision repairMolecular biologyGC boxBase excision repair (BER)030104 developmental biologyDNA glycosylasebiology.protein8-Oxoguanine DNA Glycosylase (OGG1)030217 neurology & neurosurgeryResearch PaperDNA DamageRedox Biology
researchProduct

Casein kinase 2 inhibits HomolD-directed transcription by Rrn7 in Schizosaccharomyces pombe.

2014

In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA analogue element called the HomolD box. The HomolD-binding protein Rrn7 forms a complex with the RNA polymerase II machinery. Despite the importance of ribosome biogenesis to cell survival, the mechanisms involved in the regulation of transcription of eukaryotic RPGs are unknown. In this study, we identified Rrn7 as a new substrate of the pleiotropic casein kinase 2 (CK2), which is a regulator of basal transcription. Recombinant Rrn7 from S. pombe, which is often used as a model organism for studying eukaryotic transcription, interacted with CK2 in vitro and in vivo. Furthermore, CK2-mediated phosphorylation…

animal structuresbiologyGeneral transcription factorfungiEukaryotic transcriptionResponse elementRNA polymerase IIE-boxPromoterCell BiologyBiochemistryMolecular biologyCell biologyembryonic structuresTAF2Schizosaccharomycesbiology.proteinSchizosaccharomyces pombe ProteinsTranscription factor II DPhosphorylationCasein Kinase IIMolecular BiologyPol1 Transcription Initiation Complex ProteinsProtein BindingThe FEBS journal
researchProduct